2024 Critical Environments Summit

PLC v/s DDC

What is the right system choice?

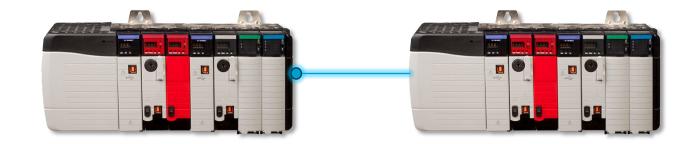
Jon Diederich & Matt Burnham

What is a "PLC"?

- P Programmable
- L Logic
- C Controller

What are the typical applications for a PLC?

- Production Plants
- Packaging Machines
- Pharmaceutical Applications
- Traffic Lights
- Critical Environmental Controls


Uptime

- PLCs are generally considered the better choice for high-performance situations because of their extended mean-time-between-failure (MTBF) over DDC systems. This makes PLCs are a popular option for environments requiring continual 24×7 performance.
- The associative costs of unscheduled downtime can lower PLCs total cost of ownership (TCO), further supporting their suitability for missioncritical facilities, such as hospitals and data centers.

Redundancy

Some PLC models offer completely "bumpless" transfer of control with no programming.

Accuracy

- The inputs of a PLC are generally more accurate than that of their DDC counterparts, often with 16bit resolution.
- This means that the PLC can divide the analog input range into 65,536 (2¹⁶) steps.

Speed

- PLCs are quicker at processing and monitoring than DDC. The speed of monitoring and reaction is program dependent, but many models refresh every 2ms.
- By comparison, many DDC models refresh at 100ms.

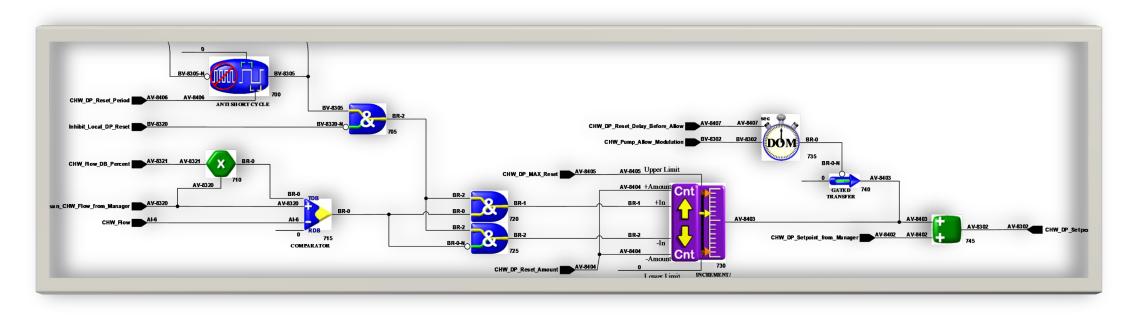
Capacity

• PLCs have a large point capacity, allowing one controller to monitor and control large or multiple systems.

What is "DDC"?

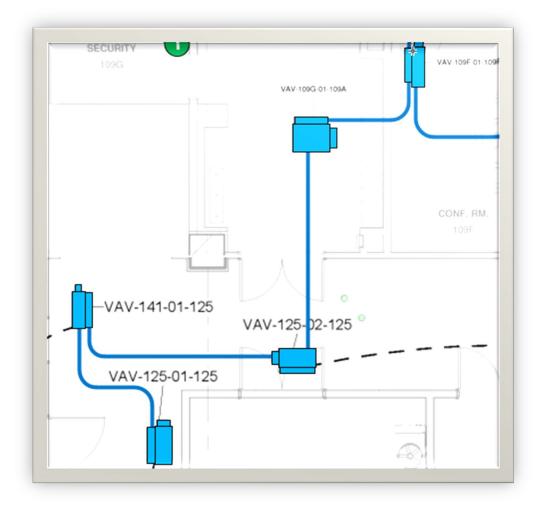
- D Direct
- D Digital
- C Control

What are the typical applications for DDC?


- Building Temperature Control
- Lighting Controls
- Security / Access Systems

Communication - BACnet

- Most DDC utilizes the BACnet protocol, developed by ASHRAE.
- BACnet was developed as a standard protocol specifically for building automation.


Programing

• DDC programming is often straightforward and simple to follow. Alarming, trending, scheduling and standard functions are built in features.

Distributed Control

- DDC uses a distributed control model.
- Controllers are located at each system served.

Standard Programs

- Many DDC systems have controller models available with "standard" programs.
- These allow for quick, cost-effective installs for systems such as Terminal Units and Fan Coils.

Choosing a path...

What's better? Should we use PLC or DDC?

Cost

PLC

- Higher cost of material
- Higher cost of programming
- High Extended-Meantime-Between-Failure (MTBF)

DDC

- Lower Cost of Material
- Lower Cost of Programming
- While not unreliable, may have lower MTBF

Programming

PLC

- "Clean Slate" Do everything precisely how you want
- Higher cost of programming

DDC

- Built in Alarming, Scheduling, PID, and basic tools – One can be limited to this construct
- Lower Cost of Programming

I/O Density

PLC

- Higher I/O density than DDC
- Allows large scale monitoring and control
- Multiple systems can be controlled from one PLC

DDC

- Designed to be distributed control
- For extremely large-scale monitoring and control, multiple controllers may be required
- Each system generally has a dedicated controller

Redundancy

PLC

• High end PLCs are capable of "bumpless" redundancy

DDC

- Controllers are not designed for "bumpless" redundancy
- Redundancy can be achieved through careful programming but will never be "truly bumpless".

Communication

PLC

 Common languages include a host of proprietary languages as well as Modbus, CANopen or HART

DDC

 Most DDC controllers speak ASHRAE's BACnet, with Lon and Modbus also as commonly available languages

PLC

- Can be up to 16bit. This allows for 65,536 steps or levels within an input
- 16bits, resolution of 0.002 degrees per bit for 120° range

DDC

- Generally, is 10 bit. This allows for 1024 steps or levels within an input
- 10bits, resolution of 0.117 degrees per bit for a 120° range.

PLC

• Some refresh I/O up to every 2ms.

DDC

• Most respond roughly 100ms.

Existing Gear

PLC

• Are there existing PLCs?

DDC

• Is there an existing DDC system?

Maybe Use Both?

PLC

Use them for the critical equipment

DDC

Use them for non-critical areas

Bring everything together under one seamless unified "front end"

Questions, Thoughts, Comments?